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Metastates in Disordered Mean-Field Models II:
The Superstates
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We continue to investigate the size dependence of disordered mean-field models
with finite local spin space in more detail, illustrating the concept of “super-
states” as recently proposed by Bovier and Gayrard. We discuss various notions
of convergence for the behavior of the paths (f — st¢,ny(7))1e(0,17 in the ther-
modynamic limit N oc. Here u,(n) is the Gibbs measure in the finite volume
{1,..n} and 5 is the disorder variable. In particular we prove refined con-
vergence statements in our concrete examples, the Hopfield model with finitely
many patterns (having continuous paths) and the Curie-Weiss random-field
Ising model (having singular paths).
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1. INTRODUCTION

In a previous paper [K1] we discussed examples of the behavior of
metastates (introduced by Newman and Stein) for random mean field spin
models with quadratic interaction and finite state space. For a motivation
for metastates in the context of spin glasses and the analysis of chaotic
size dependence in random spin models we refer the reader to [N],
[NS1]-[NS5], [K1]. Let us however remind the reader of the basic
underlying idea: The metastate is a probability measure on the states of the
system that gives, informally speaking, the likelihood of finding the system
in a particular state if we choose a large volume “at random.”

Thus, the metastate says more about the large volume behavior of a
system than the set of possible limit points of states for subsequences of
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volumes; it contains also the important knowledge of the “weights” for
finding them in a large volume.

If there is only one state for the system or the boundary conditions
preselect one particular state, the system will approach it for large volumes;
so the metastate will be trivial (i.e, a Dirac measure on this state). Also,
in translation invariant systems, even in the multiphase region, the size-
dependence is usually simple. Thus a metastate-description is not needed in
these cases. For quenched disordered systems in the multi-phase region
whose symmetry is randomly broken however, the size dependence can be
complicated (“chaotic”); if this is the case (as it is already in our simple
examples), the metastate is the natural object to describe the large volume
behavior. The actual probabilistic construction of metastates then either
involves sampling of the system over sequences of volumes (following
Newman/Stein) or averaging “over the couplings at infinity” (Aizenman/
Wehr [AW]).

Moreover, for some aspects of the size dependence of quenched ran-
dom systems and the statistics of observables along sequences of volumes,
the concept of metastates needs some generalization, to be explained below.
The present follow-up note continues the discussion of the random mean
field models with quadratic interaction considered in [K1] in this light.
We assume that the reader is familiar with this paper and make use of the
results proved therein.,

To explain the kind of questions we are interested in here, let us give
the following simple concrete example. We consider a spin-system in the
multi-phase region whose symmetry is randomly broken. Let us fix two
sites x,, x, and consider x,(17)(g, 0,,), the correlation between two spins
w.r.t. the finite volume Gibbs measures u,(#n) observed along a sequence of
volumes labeled by n=1, 2,..., for fixed realization of the quenched random
variable #. Assume that we know the realization of the random variables
describing the quenched randomness “inside” a fixed finite volume con-
taining the sites x;, x, (but not in the infinite volume.) We might ask our-
selves e.g., what will be the behavior of the maximum of x,(a, o,) taken
over volumes n=N/2, N/2+1,.., N when N goes to infinity? What is the
distribution of this quantity if we randomly choose a very large N?

To answer this question we need an object to describe asymptotic size
dependence that is even more general than the limiting distributions of
metastates constructed in [K1]. Indeed, one aspect of this is that we have
to deal with distributions of paths of volumes tv up,n1(&) (Here [s] is the
largest integer less or equal to s). Probabilistically speaking, this means
that we want to strengthen a limit theorem to an invariance principle
(functional limit theorem). The other aspect is that we look at these
distributions while fixing the random variables describing the quenched
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disorder in any finite volume. To formulate in general limit statements
arising in this situation we will need the notion of convergence in “locally
conditioned law” (or generalized Aizenman-Wehr construction [AW]),
that seems to be appropriate to describe the convergence of many objects
in disordered systems. It is stronger than “convergence in law.” When
applied directly to paths of volumes 7 up (&), this will lead us to the
notion of “superstates”, that was proposed by Bovier and Gayrard in
[ BG3]. We will then also have to discuss the right notion of convergence
of paths of Gibbs measures, as far as the ¢- (meaning: volume-) dependence
is concerned. This question depends on the specific model, as we will
illustrate in our two main examples. Our point is here again to develop the
correct framework in a rigorous way and illustrate concepts that are of
general interest in disordered systems in a simple situation (that has some
pedagogical value). In answer to the above question about maxima of
correlations we will prove that e.g., in the concrete example of the finite
pattern Hopfield model there is indeed a non-degenerate limiting distribu-
tion that is explicitly computable. (In more realistic models explicit com-
putations will of course hardly ever be possible.)

Possible further extensions in the study of chaotic size dependence are
of course to consider lattice systems and/or systems with infinitely many
extremal Gibbs states. Let us only remark here that a new phenomenon
can appear when one is dealing with infinitely many pure states, in that we
might encounter either recurrence or transience of Gibbs measures ([ K3]).
By recurrence we mean that, for each pure random infinite volume Gibbs
measure, there exist subsequences of volumes for which the system is
“close” to it. Recurrence was trivially true for the mean field systems in
[K1] having finitely many extremal Gibbs states. When one does not deal
with the local topology but imposes a stronger notion of “proximity”, or in
the case of a non-compact spin space, it is however not to be taken for
granted anymore.

Very recently the conditioned (Aizenman-Wehr) metastate of the
standard Hopfield model, conditioned on one pattern, in the replica sym-
metric regime has been constructed, using the local topology [ BG3]. It
provides a very interesting example of a metastate supported on a con-
tinuum of extremal Gibbs measures. Another explicit new example of
metastates in models with finitely many pure phases are mean field models
that are randomly perturbed by a small SK-term, considered in [ To].

The organization of the paper is as follows. In Chapter 2 we describe
the notion of convergence in locally conditioned law. In Chapter 3 we
remind the reader of the mean field models treated in [KI1] and prove
approximation statements useful for superstates. In Chapter 4 we discuss
the Curie-Weiss Random Field Ising Model (see Theorem 1) and, more
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interestingly in this context, the finite pattern Hopfield Model (see
Theorem 2).

2. CONVERGENCE IN LOCALLY CONDITIONED LAW—
THE GENERAL AIZENMAN-WEHR—CONSTRUCTION

It is important in disordered systems to distinguish between the local
influences of the randomness on the behavior of the system and the
“global” ones. The conceptual interest of the Aizenman-Wehr metastate
lies in the fact that it provides a mathematical framework for limiting state-
ments of these questions. Indeed, it is a probability distribution on the
Gibbs measures of a disordered system that, loosely speaking, describes the
behavior of Gibbs-measures given the local knowledge of the randomness,
but subjected to the fluctuations of the randomness “at infinity.” It is now
interesting to investigate in the same way also possibly different objects
than the Gibbs-measures themselves w.r.t. their behavior as random
elements. To describe various convergence statements arising naturally in
disordered systems in a unified way it is useful to take an abstract point
of view and perform the Aizenman-Wehr construction (see [AW], [N],
[K17]) in the following generalized manner. This will lead in a direct way
to what [BG3] call superstates. It also helps to keep the language
reasonably simple, avoiding to speak of hierarchies of metastates.

In disordered systems we often encounter sequences of maps
dy: H — &, given in some implicit way, from the space # of random
variables describing the disorder to some “complicated” Polish space . We
assume as always that s is a countable product of Polish spaces over a
lattice. A natural example for ¢, is the map that associates to a realization
of the disorder # a certain (finite volume) Gibbs measure ux(7). Later we
will even consider the cases where & is the space of (empirical) distribu-
tions of Gibbs measures or the space of paths of Gibbs measures. Now,
looked upon from an abstract point of view, the only structure needed for
the AW-construction is the notion of a “local function of the disorder
variables”; the actual image space ¢, takes values in plays no role. Thus,
we can make the following more general definition that extends the notion
of convergence in law. Thereby we also introduce notation that is suitable
for later use.

Definition (Convergence in lc-law). Let ¢, : # > & be a
sequence of measurable maps of the disorder space # into some Polish
space &. Let g be another random variable (with values in some other
Polish space), independent of #, and ¢ : (#, g) — ¢(#, g) a map, measurable
w.r.t. the product topology.
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We say that ¢,(y) converges in locally conditioned law to ¢(y, g)
if, for each finite A, we have, for each bounded continuous function
F:é&x 4, - R,

151{130 ELF(@nn) na)]=EE F((n, &) n4) (2.1)

Here s, denotes the product of the local disorder spaces over sites in A.
Later we will also use the notation limy,, ¢y(n)="""

limy 1o, du(n, ) if

lim E[F(n(n). n.)]1= lim EE[F(dnln. g),n4)] (2.2)
NtToo Nt

holds whenever the r.h.s. exists.

The requirement (2.1) means that convergence in law still holds if any
finite number of r.v.’s is kept fixed. Indeed, note that limy, , ¢ (1) =""12%
@(n, g) implies trivially convergence in law, limy, ,, ¢n(7) =" ¢(n, g). (We
need to check (2.1) only for the smaller set of F’s that do not depend on
the last variable.) The opposite is of course not true: Take as an example
n;’s i.id. non-constant random variables. Take & = R? and define the map
é5(n) = (11, n,) for N even, and ¢ (n)=(5,,1,) for N odd. Then ¢}, con-
verges trivially in law to a pair of independent versions (7, #7,), but does
not converge in lc-law. (Consider the function F(¢, n) = 1¢.=m in(2.1).)

Our next example is a simplified version of the process arising in
the analysis of the size dependence of the finite pattern Hopfield model
in [K1] and was also used as an example in [BG3]. Take ¢3(y)=
(ni, 1/ N >, 1. nn;) where n, are (e.g.) i.i.d. centered variables with finite
second moment. Using the central limit theorem, it is then not difficult to
see that we have limy,,, ¢3(7) =""""(n,, g) where g is a Gaussian. This
is in particular true, if the n,’s are Gaussian. Thus, in the case of Gaussians,
the sequences ¢}, and ¢ even have the same limit in law, but different
behavior in Ic-law.

This example mimics the situation in disordered systems in the
following respect: The fixing of », (or any finite number of #,’s) corre-
sponds to the “knowledge of the disorder variables in some finite volume.”
A “global quantity” like l/\/ﬁ i1 ~1; should be thought of decisive
for the “global decision” of the system of which of the phases to prefer. The
above simple limit statement then says that any finite local knowledge does
not influence the asymptotic “global behavior.”

We will now consider more interesting spaces & that arise from Gibbs
measures on a spin space 2 whose disorder variables are the #s. Let us,
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as usual, assume that the spin space @ is a countable product over a finite
set S, equipped with the product topology. By #(Q) we denote the set of
probability measures on Q (the set of states), equipped with the weak
topology, which makes it Polish. The set of metastates is the set of proba-
bility measures on the states, 2(2(2)), equipped with the weak topology
inherited from 2(£2).

Now, for a sequence ¢ (#) given by a sequence of finite volume Gibbs
measures py(n)e & =2(Q2) the statement limmOOyN(r]):“"a“’y(q, g) is
just a different notation to describe the AW-metastate. Indeed, it says that
the distribution of the Gibbs measures 4 under the AW-metastate £(5) is
induced by the distribution of g under the measurable map u(y, g) for
fixed #.

To get something new, let us consider the sequence of empirical meta-
states kn(n)=1/NTV_| 5ﬂ"(q)e.9/(;9’((2)) that is associated to a sequence
of finite volume Gibbs measures u,(#). The statement limy ,, K y{(#) ="""
w(n, g) with a given map «(#, g) could then be rephrased as “x(#, g)
describes the distribution of metastates (induced by g) under an Aizenman-
Wehr metastate for the empirical distributions.” In fact, this gives logically
a stronger statement than simple convergence in law, in the way it was
proved in our examples in [K1]. We will however see later that con-
vergence in law proved in those examples carries over in a direct way to
convergence in lc-law. Extending the empirical distribution for Gibbs mea-
sures we can also consider generalized empirical averages of the form
dp(m)=XN_, G(un,(n),n/N), where G is a continuous function on
P(2Yyx[0,1].

Finally we can look directly at the paths ¢y (#) = (71— pun))o<i<i-
Here we write x4, for non-integer s for the element in () obtained by
linear interpolation between p and pur,, 7. ([s] denotes the largest
integer less or equal to s.) The distribution of the limit in lc-law was called
the superstates in [ BG3]. A first step to control this object is at any rate
to look at the finite dimensional marginals, that is ¢ (1) = (uy,, ny(1)s.s
B n1(M)) for fixed O<t <t,< ... <1, < 1. If we are for the moment
ignoring topological subtleties (that can however be important), we
formally get back the empirical distribution from the whole path behavior.
Whether we can expect in the limit continuous trajectories (as a function
of ), jump processes, or more singular trajectories has then to be investi-
gated in the specific model. Also the notion of convergence has conse-
quently to be adapted to the model. When we come to our examples, we
will see that the finite pattern Hopfield model has asymptotically con-
tinuous trajectories, allowing for convergence in a metric that is uniform
in ¢, in contrast to the singular trajectories in the Curie-Weiss Random
Field Ising model.
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3. MEAN FIELD MODELS WITH QUADRATIC INTERACTION

In [K1] we treated certain quadratic random mean field models and
stated some approximation properties for them that were good enough to
imply in a direct way results for metastates in terms of the asymptotic
weights. These criteria were then shown to hold for our main examples, the
CWRFIM and the finite pattern Hopfield model.

The very same criteria are also useful to treat the superstates, as we
will see in Proposition 1. In cases where we want to obtain convergence
statements for a metric that is wniform in the rescaled volume label ¢ we
have to exclude that the trajectories become “increasingly rough” with
large N. This means that the finite-volume Gibbs-measures corresponding
to (sufficiently large) volumes that differ only in a small fraction of sites are
similar. While this is also true for “most” of such pairs of Gibbs-measures
in the CWRFIM, it does not hold for all of them, leading to asymptotically
singular trajectories (see Theorem 1). We will show below in Lemma | how
we can decide these “tightness questions” on the level of the asymptotic
weights.

Let us recall the models we treated in [ K1] and remind the reader of
some of the notation used therein. The spins ¢ = (0;),_, , . taking values in
the infinite product space 2 = S™ over a finite® set S have an a priori distribu-
tion according to a (possibly random) product measure u°(n)[o,=w ] =
[Ticat%(n)o;=w;] where 5, ie N are random variables. The quadratic
mean field energy function is of the form

|z

N
Enla,n)= == my(o, n'= -

M

2 myla.n)? (3.1)
v=1

where the order parameter i is defined by the empirical average (o, n) .=
1/N ¥~ m(o,, n;) with some bounded continuous map (a,, #,) — m(a,, 17;)
taking values in R™. The finite volume Gibbs measures are then

exp( —BEN(w, 1))

0 —
Norm. wmlo=w] (3.2)

unmo=w] =

Our two main examples are the following. Both have Ising spins
gie{—1,1}.

Curie-Weiss Random Field Ising Model (CWRFIM). The
a priori measures u,(n,)[a;= +1]=(e*#)/(2 cosh(pén,)) are random,

¥ We stick to the models with finite local state-space of [ K1]; our main specific examples are
even Ising models.
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where, for simplicity, #; are i.i.d. Bernoulli variables, taking the values + 1
with equal probability. The order parameter is given by m((g,,#n,) =0,,
£>0 is the magnitude of the disorder.

M -Pattern Hopfield Model. The a priori measures for the spins
are symmetric Bernoulli. We call the random variables in this case ¢
instead of . (&4);21. 0. we1.. m=()icn, .. are iid. (for different i, u)
with P[&# = +1] =1 The order parameter is given by m(g,, ¢,)=0,¢, €
{1, —1}™. The empirical mean ry(a, &) is the overlup vector.

Going back to the general case we also have to remind the reader of
the Hubbard-Stratonovich measures

: expl — BN @y(m, 1)) dim
dm) = 33
) = T exp(— BN 1) )

given by the function

m? 1
¢N(ma77):7_ﬁ Y L(m,n,) (3.4)
I1<isN

where L(1,7,) = 1/Blog | n2(n,)(da;) exp(Bt-m(o,, n,)) is the logarithmic
moment generating function of the tilted measures

_exp(Bt-m(w;, 1)

,U?(tv”i)[o'i:wi]— exp(BL(1, 71,)) ui(n)lo,=w;] (3.5)

The infinite product measures z° (m, 7)o 4= w 4] = [Tic 4 %M. 1) 0, = ;]
play the role of the infinite volume Gibbs measures when m is an element of
the set

= {n EL @y, )] =i EL (' )] | (36)

which labels the pure phases according to their “magnetization.”

The problem of the analysis of size dependence is to make rigorous
an approximation of the form un(m)x3,. e pu(n)u(m, ) where
(P (M) me.n 15 @ sequence of random probability vectors, indexed by N,
that we will refer to as “the asymptotic form of the weights.” This was done
in [ K1] where we defined the following approximation property that was
useful for the metastate analysis and will also be useful here. [t was then
shown to hold for our main examples by explicit saddle point analysis.
Assume that we are given a sequence of “nice” subsets #(N) < # of the
disorder space. We write # =lim infy #(N) for the set of #’s that are
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contained in all #(N) with possibly finitely many exceptions. We also use
the bigger “nice” set #' = {n, limy;,, /N X0_ | 1, coenye=0}. We need

Property 1. We say that jiy(n) becomes close to the probability
vector (pN(ry))meJ, along the regular sets #(N) if, for all ne #, for all
me M, limy, () B,,(m)]—pH(n))=0 for a decreasing sequence of
radii py | 0.

We will also assume the following piece of information on the
asymptotic form of the weight (shown to hold in our specific cases in
[K1]) that we call here

Property 2. For all ne #, for all finite V=N, we have limy;,
supg, lpn(n) — pa(n +7y)Il=0 where 7, is a local perturbation in the
finite volume V s.t. 5, 47, lies in the support of the distribution P.

Denoting again the empirical metastate xy(n)=1/NYY_,d um) WE
may now get in this situation in extension of Proposition 1 of [K1]

Proposition 1. Suppose that we are given a quadratic random
mean field model of the above type that satisfies the properties 1 and 2. Let
n' denote a copy of disorder variables, independent of #.

(i) Assume that P[#"]=1. Then we have
N

lim x le-law Jim — 3.7
N ) = N N ng e 200 1o (m ) (3.7)

and, more generally, for each bounded continuous G: 2(2) x [0, 1] - R,

llleG<ﬂn )Z,) “"'“‘”hleG<Z P m, i), :,)

NTOO NTOO 1 me.#
(3.8)

(ii) Assume that limy,, P[A#(N)]=1. Then, for all 0<r <
t2< e <tkS19

IEIiTnZO (u[,lN](ﬂ),---,ﬂ[ka]('?))

=lelaw Jim Z (P’[”,IN](”'),---, [)'[",kN](”’))/‘go(m, ) (3.9)

Nfow me.#

Remark. Note that we need for (ii) that ¢, is strictly bigger than 0.
As explained in Chapter 2, the »s are the same on both sides of the equa-
tions (in contrast to [K1])!
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The proof uses essentially arguments as in Proposition 1 from [K1];
we will postpone it to the end of this chapter. To proceed further let us
assume now that we are in a situation where we have exhibited a proper
continuous time process and proved the limit for paths of Gibbs measures
in the sense of convergence of finite dimensional marginals. Let us now ask
for convergence in the stronger sense of a metric that is uniform in ¢,
thereby forcing us to consider tightness questions. Indeed, the experience
from [K1] provides us with an example where we expect “asymptotically
continuous” paths, namely the finite pattern Standard Hopfield model. It
means that, for large volumes N’ = N differing only in a small fraction & of
sites, the Gibbs measures are “close,” uniformly in N. However, one can
expect the paths to be continuous only on the open interval (0, 1] which
leads us to work in fact with the family of metrics given by

dlt—p,, to )= sup d(u,, 1) (3.10)

tele 1]

where, to be definite, we now choose the metric on 2(Q)

dp, ') = Z 27¥ Z |ﬂ[0AN=wAN]—1u,[GAN=wAN]| (3.11)
N=1

“’ANG'QAN

with the volumes 4, ={1,.., N}. Then we consider the weak limit on the
space of paths (£ u,),c(e,, 17 €quipped with the metric d, , simultaneously
for any fixed ¢, > 0.

It is well known that for such limit to hold we need 1) convergence of
finite dimensional marginals and 2) that the sequence of paths is tight,
meaning precisely that for each fixed £ > 0.

lim sup P| sup dp, (&), pu(&)=e|=0 (3.12)
Sl 1,2, e <s, <1
ls—t<d

(see, e.g., [ Po], Th. V.3, p. 92). It suffices here of course to consider integer vol-
umes Since Sups, S ALy, ¥ <B d(.uss ‘u's’) < Supn, wWeN:[4)l<n n<[B]+1 d(tum u’n’)

Let us point out that tightness is not trivially true in the mean field
models we consider (in the concrete example of the CWRFIM it is also
actually false). Indeed, to treat the difference between the weights in
volumes N, N' with N < N’ < (1 + J) N with a priori estimates we could try
to consider just the supremum over N, N’ over the arguments of the
exponentials occurring in the j-integrals, i.¢.,
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sup IN®y(m, 17) — N'® . (m, )

N :NSN <S(1+6)N

= sup Y  Limn) (3.13)

N :NSN'<(l+8)NIi:N<igN'

with m varying in a ball around a specific minimizer, For fixed m this
quantity will or course be of the order of \/—OW which diverges with N. This
simple consideration however does not take into account that the “true
minimizers” might give better estimates, as it is the case in the Hopfield
model.

The next probabilistic lemma shows, that assuming a nice a.s. approxi-
mation for the Gibbs measures it suffices already to check tightness on the
level of the asymptotic weights.

Lemma 1. Assume that limy; o, d(pun(n), X e PR 1% (m, 1)) =0,
a.s. Then the condition for the asymptotic weights p(7) given by

lim sup P sup lpn(n) —pa (Ml Ze| =0 (3.14)
3]0 N N,N': ey NXN<N' <N+4N
N'gN

for any ¢ >0, implies the tightness condition for the finite volume Gibbs
measure (3.12) where |-, any norm on R and ¢, >0 fixed.

Remark. The lemma is useful because, assuming property | and
P[#]=1, it was shown in [K1] that the first hypothesis of the lemma
holds. So, in Chapter 4, we don’t need any new refined explicit saddle point
estimates and can obtain results about the superstates as corollaries of our
previous approximation results.

Proof. It is useful to make explicit the map T, that associates to an
element p in &, the simplex of |.#|-dimensional probability vectors, the
infinite volume Gibbs measure

T p)= 3 p"ullmn) (3.15)

me . #H

We have d(T,(p), T,(P)) <2 X eu |P™— P™|, so T, is Lipshitz if we put
a distance d(p, p):=|p—pll on &. Let us now write in short for the

approximated measures un(#)=>,c.u p%(fy)y‘c’n(m, n)=T,pw~n)). We
have
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sup P[ sup () s (1)) 28}
Nz=nN, N, N : e NS<N<N' KN+6N
N'sN

, &
< sup P{ sup d(u'N(n),uN'(n))zﬂ
N=N, N, N :egNSN<N <N+JN
N <N

P [2 sup d(uNm,mvw»;f] (3.16)

N:NzeghN, 2

From the a.s. convergence in the hypothesis follows in particular (from
dominated convergence) that the second term on the r.h.s. converges to
zero with Ny T oo since ¢ is strictly positive. For fixed small # >0 we can
thus choose N, s.t. this term is bounded from above by #. Thus we get

lim sup sup P[ sup d(pn(n), e (1)) 28]
5.0 N N, N :egeNSN<N' €N+6N
N <N
. g
<limsup sup P[ sup d(uN(n),MN'(n))Zﬂ
510 N:N<N, N,N': ey NSN<N'<N+N
N'<N
M ! 1 8
#limsup sup P | sup i) e () 25
510 N=N, N,N':e,ﬁ<N<_N'<N+¢s1V
NN (3.17)

The first limsup on r.hs. is zero, trivially. Since # is arbitrary it suffices to
show that for fixed ¢ > 0, for any N, we have that the second limsup on the
Lh.s. is zero. But this follows from the hypothesis by the Lipshitz continuity
of T,. 1

n

We finish this chapter with the

Proof of Proposition 1. Remember that functions of the type
G(p) = G(u( f1),, u(f;)) are dense in the continuous functions on ()
w.r.t. sup-norm, where the f;’s are local and & is continuous on R’ (see
[AW]). The functions of the type F(x)=F(x(G,),... k(G,,)) are dense in
the continuous functi~ons on #(#(2)), where the functions G,(u) are of
the above form and F is continuous on R™ To show (i), we only need to
look at

. ~/1 X
tim €yt ) =EF (3 T Gt (3.18)

n=1
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where G: 2(2) - R* is a continuous function on the states and the
dependence of F on 7 in the last argument is local. This shows in particular
that the second statement in (i) (which allows for volume dependent G’s)
is more general.

To show the locally conditioned convergence in the case of possibly
volume dependent G’s we have to show that, for any continuous F: R* x
2(Q2) - R, we have that

lim {EF<iIZv:G< ()”)-)
fim €F (5 X G{mabm g Jin
n

1 ' l i my .. 0 .
= lim EE F(N n§16< Y PRy ul(m, n) N>"7> (3.19)

N1 me#H

where E’ denotes expectation w.r.t the independent variable #’. For the first
argument of the function F we can write

1 X n |-
N Z G ﬂn(”)’ﬁ Lpimy + C ||G|iooﬁ Z | g (3.20)

n=1 n=1

Recall now that from property 1 follows that d(1,(7), Yme . P7(n) 1% (m, 7))
1y = 0 with n7 co (see Lemma 2 [K1]), where d is a metric on .#(£2)
for local convergence of the states. So we have, using that G is uniformly
continuous, due to the compactness of its domain, that, for fixed #,

G(#n(n),%>lmn)=0< Y p,,’"(n)ﬂ&(%ﬂ%%)lm)+0a_s_(1) (3.21)

me.#H

But, with P[] =1, this also implies that

: %G( ()”)1
N7 /’l’l’7’—h n
N,,=1 N H(n)

N
=5 G< 2 p;"(ﬂ)ﬂ‘io(m,ﬂ),%>lm)+oa.s.(1)
=1

me.#

I - m 0 h
=N ;G< 2 p,,(n)uw(m,n),ﬁ>+oa.s.(l) (322)

me.#

We can assume that F is uniformly continuous in the first variable, for
fixed # in the second variable. So we get from dominated convergence that
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imeF(L ¥ 6 7).
im <N Y </J,.(77),N>’77>

Nt oo n=1

— i & m 0 n > )
Jim EF<N El G<MEZJ{ PR poom, )55 o ) (3.23)
Now we use the continuity of G as a function of x4 and and the locality of
F in the second argument. We can assume that G(¥,,.. » p™(n) 1% (m, 1),
n/N) is some function G(p,(#n), n/N; ;) with a finite volume J whose size
is uniform in n/N. So the dependence of the expression under the expecta-
tion on the r.h.s. of the last equation on # is local except for the explicit
dependence contained in p,(#). Using now property 2, uniform continuity
and dominated convergence to replace # by the independent copy #' (as in
the proof of [ K1] Proposition 1) finishes the proof of (i).
To prove (ii) we have to show that

lim EF((upm(m))ici i)
Ntoo

= lim [E'[EF<< Y Pl ul(m, '7)>

NToo me.#

; f7> (3.24)
=L,k

?

We can write for the expression under the limit on the Lh.s.

EF((ppeanyM) iz i) L ,x([z‘.N])+@< > P['yf([tiN])]>
i=l..k

..... |

;”> I coeny +o(1)
k

= [EF<< 2 PTa(m ul(m, '7)> .....
(3.25)

me.H

i=1..,

due to the approximation property I, uniform continuity of F and
dominated convergence. The second part of the argument that allows to
replace # by #' in the argument of p proceeds again as above. |

4. SUPERSTATES IN THE CURIE-WEISS RANDOM FIELD
ISING MODEL AND FINITE PATTERN HOPFIELD MODEL

Let us illustrate the concepts that were introduced by our two main
examples. We revisit only briefly the

4.1. Curie-Weiss Random Field Ising Model

The model possesses the pure phases pX(n)=u°(+m*, n) where
m*=m*(f, £) is the largest solution of the averaged mean field equation;
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these measures are different for large inverse temperature f and small dis-
order &

The form of the superstate can easily be understood. We obtain it if
we: 1) assume that the system of size n is in the plus (minus) phase once
the sum of the random fields > 7_, #, is positive (negative) and 2) replace
the process 7 — l/\/ﬁ SNy, by an independent Brownian motion W,,
for large N. More precisely, the following results hold.

Theorem 1. For the Gibbs measure valued paths (¢ (1) ,n1)0 <, <1
we have the limit in locally conditioned distribution
Al/iTn;lo (T pnydo<icr = (1> Ly ot 20D + 1w colig()o i<
(4.1)

in the sense of convergence of finite dimensional marginals or convergence
of functions {g dr F(u,. 1) with F continuous on .2(22)x [0, 1 ]. Here W, is
a Brownian motion starting at the origin, independent of 5. The variable
7 is the same on both sides.

Proof. Let us use from [KI1] the sets #(N)={n: TN nl<
NU+O2 and T gl =N° (for small J, 6>0) that have
limyy,, PLA(N)]=P[#"]=1. We showed that the finite volume Gibbs
measures satisfy the approximation property 1 with the weights
(Ig¥ p>o0s Is¥ 4.<0) (see the proof of Theorem 1, 1’ therein). From this,
convergence of the finite dimensional marginals follows directly from
Proposition | since we have, by the multidimensional Central Limit

Theorem, that

l [y N] [4N] faw .
_< 2 Mises > ’7,')—’ (Wis W) with NT .

JN

To see that convergence holds for functionals j(‘, dt F{u,, 1), we use
Proposition 1{i). For continuous F we have to verify then that (I/N)
SN Flgr 5 0.n/N) converges in law to {§ dr F(1, .0, 1). But this is
easy using e.g. the strong approximation from [ Rio] (see also the Hopfield
case below) that gives us a Brownian motion W, on the same probability
space with the #'s s.t. sup,_,  y[2f_, mi—W,1=C,.(logN). 1

I
i=1 i=1

Note that the process ¢ — 1y, _o has highly singular paths. (Every zero
of W, is limit point of zeros from the right, so 1, ., is not a cadlag?*
function.) Therefor we cannot hope for a much better natural notion of

4 Meaning: continuous from the right and having left limits.
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convergence in this case. Indeed, let us consider the continuous path W,
that is obtained from the Brownian motion W, by linear interpolation
between integer times. Then the process 1. .o, does not converge to
Ly, >0 With NT oo in sup-norm (and also not in the Skorohod-norm that
is frequently used for the treatment of jump-processes).® This illustrates the
point that a suitable notion for the limit in locally conditioned distribution
for the paths of Gibbs measures has to depend on the model.

An example where we encounter a nicer and richer structure is
provided by

4.2. The Finite Pattern Hopfield Model: Cluster Points of
Paths and Superstates

We have to recall general facts about the Hopfield model and some
notations from [ K1]. For the beautiful results in the case of growing num-
ber of patterns that we do not touch here, see [BGP], [ BG1]-[BG3],
[T]. For > 1 there exist precisely 2M pure phases that come in pairs of
symmetric mixtures

Wil &) = 3(ul(m*a”, &) + po(—m*a’, &) (4.2)

Here m*=m*(f) is the largest solution of the ordinary Curie—Weiss
equation m = tanh fm and « is the vth unit vector of R™. To respect this
symmetry let us, as in [K1] (by a little change of notation compared to
Chapter 3), write % for the simplex of M-dimensional (and not 2M-dimen-
sional!) probability vectors.

Denoting by o/ the (M(M — 1))/2 dimensional vector space of M x M
symmetric matrices with vanishing diagonal we defined the map p: .o/ - &
by

V)

V(V —__rr
PS5 )

where  pY(V) =exp(c(B)(V?)™) (4.3)

with the constant c(f)=(Am*)/(2(1 — (1 —m*)?)). Let us denote by
W,=(W")1<u v<m @ Brownian motion with values in .o/, independent
of the disorder variables &. It is given by M(M —1)/2 independent one
dimensional Brownian motions W* for 4 <v, and setting W* := W** and
W =,

* One might want to construct “fancy” metrics involving Hausdorff measures that do not see
the zero set of the Brownian motion, but we do not pursue this any further in this context.
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Then we have

Theorem 2. (i) The cluster points of the sequence of paths
(t— u,n(&))/ere, 17 In the uniform metric d, are, for almost all pattern &,
the Gibbs measure-valued paths (1—20  ¢" (1) p (&), ege1y Where
(t—q(t)) ;e 17 18 any continuous &-valued functlon, and ¢>0.

(ii) Let F denote a bounded function on the space of continuous
2(Q)-valued paths, indexed by [¢, 1], £>0. Assume that F is continuous
in the uniform metric d,. Then we have the limit in lc-law

lim F(tr—»/z,N(C))=°"“wF<t p"< >/l (5)> (44)
\/7

Nt v=1

Note that the weights on the r.h.s. of the equation (4.4) are singular
for 1|0 which forces us to restrict to intervals [¢ 1] that are bounded
against zero. Loosely speaking, the emergence of the Brownian motion
explains itself from the approximation of the finite volume free energy
differences that are essentially sums of independent random variables, using
an invariance principle for multidimensional random walks.

In answer to the question in the little example in the second paragraph
of the introduction, we see from (ii) that

lim sup ,u,,(é)(axl oy,
Ntow n:[NR2]<n<N

M w
e (e sup ch;lcj;zp”< > (45)

12t v= \/?

where the &’s are the same on both sides. In the case of the above observ-
able, simple convergence of finite dimensional marginals would not
have been sufficient to conclude this statement. The a.s. cluster points of
this observable are given by the (possibly degenerate) interval (m*)?
[min}L, & &Y, max)l &) &

Proof. In [K1] we saw that the asymptotic form of the weights is
governed by the M x M matrix by(&), given by by (&) =2 | (&4 &Y —o0*).
It is however even more convenient to use the normal partial sum process
gn&), living on the same probability space, that is a strong approxi-
mation in the sense that sup,_, . wlIl6,— gl =, (log N) (see [Rio],
note the typo in [KI1]!) It is such that y*"=9¥* for v#£pu, =0,
P=0") <upvern=ro. are iid Normal Gaussians (for different {z, v}
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and n). We write Te(p)=3", p’u’ (&). It was shown in [KI] that, for
a.e. realization of & we had

b . N
fim (7o (7 ) i) = i 0 (e (277) s =0

(4.6)

The space of #(£2)-valued processes on [&, 1] that are continuous w.r.t.
d, is a Polish space equipped its natural Borel o-field. From the conti-
nuity of the mdps Vie p( ) dnd T¢ we see that, for fixed &, the process
(t=>3Y™ p ,/f }.<r<1 18 the image of the Brownian paths on
[0,1] under a contmuouv (m particular measurable) map; thus it is a
proper random element.

We start with the proof of (ii). From Proposition 1(ii) and the r.hs.
of (4.6) follows that convergence in Ic-law holds in the sense of convergence
of finite dimensional marginals. According to Lemma 1, all that is left is to
check the tightness for the asymptotic weights where we conveniently use
those given by the Gaussian approximation. Breaking up the N, N'-sup
into suprema over sub-blocks of side-length 6N(1 —¢,) it suffices to show
that

[(1—#g)/d]
limsup ) P [ sup H P <gN(é)>

5|0 N k=0 N, N':
(sl+15k)IV<N<N'<(el+(5(k+l))IV

(89 ]

We estimate the probability in the last line uniformly in k. We have
from [K1], Lemma 6 that | p(V)— p(V"), <4e(B) IVl + 1V = V')
|V — V|, with a certain matrix norm whose form doesn’t matter here.
It is easy to see from this estimate that (4.7) is implied if we can find a
function R(J) with R(J)T oo as 60 s.t.

.1 8N gN 8’
lim < sup P { sup } = (4.8)
310 N N NN S(1+HN \/_ \/
and
11m —- sup P { “ J 0 (4.9)
310 (5 N=1,2,.
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for any small enough ¢ >0. The last probability does not even depend
on N and 1s well known to be bounded above by an exponential
Const e =™ ®_To make the limit zero we might thus choose e.g., R;=
log 1/0. To show (4.8) write

En

N NN <(l+6)N

1 gn 1 Al
<[1- >H + su 410
v N R R

Since (1 —1/(/1 +3J)) Rs— 0 we see from (4.9) that the first term on the
r.h.s. can be ignored. To treat the second term on the r.h.s. we can consider
the matrix norm that is given by the sum of the modulus of the elements.
Using the maximal inequality P[max, ;< [T/ , | > x] < 20720
gives then

1 N’ l;'l e —const 8'2/(R§(5)
_Supﬂ)[ 2: Yn 2};} S————T;—————+0
fN N<N <(l+6)N n=N+1 E]

(4.11)

with 6 | 0, which finishes the proof of (ii).
The proof of (i) follows from the following probabilistic fact.

Lemma 2. Denote by (V),),.r_ the process obtained from a ¢-dimen-
sional random walk with standard Gaussian increments by linear inter-
polation for non-integer ¢. Let ¢: (0, 1] — RY be continuous, ¢>0 and
4> 0. Then

h—(ﬁ(t)” < ¢ for inf. many N | =1 (4.12)

JN

Here is a short proof for the convenience of the reader: Consider
blocks indexed by k with endpoints N, =k!. It suffices to show that, for
each d, >0 we have

[F“[ sup

et

VINk - VtNk .

VNe—= Ny

P[ sup —¢(t)”<5, for inf. many k| =1 (4.13)

et
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In fact, assuming this, we have from the Law of Iterated logarithm that,

up | 2% ¢<z)”
u _
e<i<l | /Ny
VtNk t N, T 1Nk 1
< sup ’ — |+ /1 —— sup ‘ qﬁ(t)l’
et<l */Nk e<t<l '\/Nk

1
#(1=1=g) s 0

<Const\/NkN; loglog Ny +ﬁ_15]

N

+<1— /l*%) Const <26, (4.14)

for infinitely many (large enough) k. By Borel-Cantelli, it suffices to show
now for the “scale invariant” expression in (4.13) that lim infy P[sup, <, <
II( VN,/\/_ y—¢(£)|| <d,] is strictly positive. But this is easy to see going
back to finite dimensional approximations, using that ¢(¢) is uniformly
continuous on [¢, 1], and using the maximal inequality to control the fluc-
tuations. |

Using the explicit map from an M-dimensional sub-manifold of
R(M(M — 1))/2 to R™ that was constructed in the proof of [K1] Lemma 8
it is not difficult to see that Vi p(V) is not only onto & but that the
closure of the image of the continuous functions (71— V,), <, under the
map p are the continuous functions (7 p(?)),<,<,. From this statement,
the right equality of the approximation (17), Lemma 2, and continuity of
Vi p(V) we obtain (i). |

The same type of arguments also show that the cluster points of the
sequence of empirical metastates x 5(&) are, a.s., the images of all probabil-
ity measures on the space of weights & under the map g— Y™ | ¢"u’ (&)
(Here we have to use again that Vi p(V') is onto and that we can
approximate any measure on . by a measure of the form [§ dr 6,4, with
continuous ¢.)

For the lc-limit we obtain limy; . kx(E) =" [§dt dg4 /)
with ¢ being the same on both sides.
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